116 research outputs found

    An 8/5 approximation algorithm for a hard variant of stable marriage

    Get PDF
    When ties and incomplete preference lists are permitted in the Stable Marriage problem, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe a polynomial-time 8/5-approximation algorithm for a variant in which ties are on one side only and at the end of the preference lists. This variant is motivated by important applications in large scale centralized matching schemes

    Popular matchings: structure and algorithms

    Get PDF
    An instance of the popular matching problem (POP-M) consists of a set of applicants and a set of posts. Each applicant has a preference list that strictly ranks a subset of the posts. A matching M of applicants to posts is popular if there is no other matching M' such that more applicants prefer M' to M than prefer M to M'. This paper provides a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a structure called the switching graph, a directed graph computable in linear time from the preference lists. We show that the switching graph can be exploited to yield efficient algorithms for a range of associated problems, including the counting and enumeration of the set of popular matchings and computing popular matchings that satisfy various additional optimality criteria. Our algorithms for computing such optimal popular matchings improve those described in a recent paper by Kavitha and Nasre

    Strong stability in the Hospitals/Residents problem

    Get PDF
    We study a version of the well-known Hospitals/Residents problem in which participants' preferences may involve ties or other forms of indifference. In this context, we investigate the concept of strong stability, arguing that this may be the most appropriate and desirable form of stability in many practical situations. When the indifference is in the form of ties, we describe an O(a^2) algorithm to find a strongly stable matching, if one exists, where a is the number of mutually acceptable resident-hospital pairs. We also show a lower bound in this case in terms of the complexity of determining whether a bipartite graph contains a perfect matching. By way of contrast, we prove that it becomes NP-complete to determine whether a strongly stable matching exists if the preferences are allowed to be arbitrary partial orders

    Efficient algorithms for generalized Stable Marriage and Roommates problems

    Get PDF
    We consider a generalization of the Stable Roommates problem (SR), in which preference lists may be partially ordered and forbidden pairs may be present, denoted by SRPF. This includes, as a special case, a corresponding generalization of the classical Stable Marriage problem (SM), denoted by SMPF. By extending previous work of Feder, we give a two-step reduction from SRPF to 2-SAT. This has many consequences, including fast algorithms for a range of problems associated with finding "optimal" stable matchings and listing all solutions, given variants of SR and SM. For example, given an SMPF instance I, we show that there exists an O(m) "succinct" certificate for the unsolvability of I, an O(m) algorithm for finding all the super-stable pairs in I, an O(m+kn) algorithm for listing all the super-stable matchings in I, an O(m<sup>1.5</sup>) algorithm for finding an egalitarian super-stable matching in I, and an O(m) algorithm for finding a minimum regret super-stable matching in I, where n is the number of men, m is the total length of the preference lists, and k is the number of super-stable matchings in I. Analogous results apply in the case of SRPF

    Popular matchings

    Get PDF
    We consider the problem of matching a set of applicants to a set of posts, where each applicant has a preference list, ranking a non-empty subset of posts in order of preference, possibly involving ties. We say that a matching M is popular if there is no matching M' such that the number of applicants preferring M' to M exceeds the number of applicants preferring M to M'. In this paper, we give the first polynomial-time algorithms to determine if an instance admits a popular matching, and to find a largest such matching, if one exists. For the special case in which every preference list is strictly ordered (i.e. contains no ties), we give an O(n+m) time algorithm, where n is the total number of applicants and posts, and m is the total length of all the preference lists. For the general case in which preference lists may contain ties, we give an O(√nm) time algorithm, and show that the problem has equivalent time complexity to the maximum-cardinality bipartite matching problem

    "Almost stable" matchings in the Roommates problem

    Get PDF
    An instance of the classical Stable Roommates problem (SR) need not admit a stable matching. This motivates the problem of finding a matching that is “as stable as possible”, i.e. admits the fewest number of blocking pairs. In this paper we prove that, given an SR instance with n agents, in which all preference lists are complete, the problem of finding a matching with the fewest number of blocking pairs is NP-hard and not approximable within n^{\frac{1}{2}-\varepsilon}, for any \varepsilon>0, unless P=NP. If the preference lists contain ties, we improve this result to n^{1-\varepsilon}. Also, we show that, given an integer K and an SR instance I in which all preference lists are complete, the problem of deciding whether I admits a matching with exactly K blocking pairs is NP-complete. By contrast, if K is constant, we give a polynomial-time algorithm that finds a matching with at most (or exactly) K blocking pairs, or reports that no such matching exists. Finally, we give upper and lower bounds for the minimum number of blocking pairs over all matchings in terms of some properties of a stable partition, given an SR instance I

    Scholars and radicals: writing and re-thinking class structure in Australian history

    Get PDF
    We wrote Class Structure in Australian History in a period of heightened social struggle. It grew out of collaborative research projects at Sydney\u27s Free U in the late 1960s. The book was distinctive in both emphasising the socialist tradition of class analysis and trying to find new paths for it. Its first edition was ignored by mass media, and often mis-interpreted in professional journals. Nevertheless it circulated widely and has continued to be a point of reference for progressive scholarship. Its method tried to carry forward the Free U project of democratic knowledge making, linking documents with analysis and inviting shared interpretation. Its theory emphasised the reality of classes as historical formations, and the importance of understanding class structure as a whole, on both points reacting against influential frameworks of the time. Looking back, CSAH appears uncertain in its approach to race and gender, and inadequate in its handling of coloniality; it was written in isolation from similar projects in other parts of the postcolonial world. Yet its approach still has value in understanding the changing dynamics of class on a world scale, the class relations of the neoliberal era in Australia, and the current configuration of power in Australia

    Advanced brain dopamine transporter imaging in mice using small-animal SPECT/CT

    Get PDF
    Abstract. The stable marriage problem has recently been studied in its general setting, where both ties and incomplete lists are allowed. It is NP-hard to find a stable matching of maximum size, while any stable matching is a maximal matching and thus trivially a factor two approximation. In this paper, we give the first nontrivial result for approximation of factor less than two. Our algorithm achieves an approximation ratio of 2/(1+L −2) for instances in which only men have ties of length at most L. When both men and women are allowed to have ties, we show a ratio of 13/7(< 1.858) for the case when ties are of length two. We also improve the lower bound on the approximation ratio to 2

    Approximability results for stable marriage problems with ties

    Get PDF
    We consider instances of the classical stable marriage problem in which persons may include ties in their preference lists. We show that, in such a setting, strong lower bounds hold for the approximability of each of the problems of finding an egalitarian, minimum regret and sex-equal stable matching. We also consider stable marriage instances in which persons may express unacceptable partners in addition to ties. In this setting, we prove that there are constants delta, delta' such that each of the problems of approximating a maximum and minimum cardinality stable matching within factors of delta, delta' (respectively) is NP-hard, under strong restrictions. We also give an approximation algorithm for both problems that has a performance guarantee expressible in terms of the number of lists with ties. This significantly improves on the best-known previous performance guarantee, for the case that the ties are sparse. Our results have applications to large-scale centralized matching schemes
    corecore